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We generalize the Bergman-Milton spectral representation, originally derived for a two-component compos-
ite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work
has been motivated by a recent study of the optical absorption spectrum of a graded metallic film �Huang and
Yu, Appl. Phys. Lett. 85, 94 �2004�� in which a broad surface-plasmon absorption band was shown to be
responsible for enhanced nonlinear optical response and an attractive figure of merit. It turns out that, unlike in
the case of homogeneous constituent components, the characteristic function of a graded composite is a
continuous function because of the continuous variation of the dielectric function within the constituent com-
ponents. Analytical generalization to three-dimensional graded composites is discussed, and numerical calcu-
lations for multilayer composites are given as a simple application.
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I. INTRODUCTION

In graded materials �1� the physical properties may vary
continuously in space making them distinctly different from
homogeneous materials. Hence composite media consisting
of graded inclusions have attracted much interest in various
engineering applications, such as reduced residual and ther-
mal barrier coatings of high temperature components in gas
turbines, surface hardening for tribological protection, and
graded interlayers used in multilayered microelectronic and
optoelectronic components �2–4�.

Like graded materials, thin films are of great interest in
many practical applications and often possess different opti-
cal properties in comparison to bulk materials �5�. In particu-
lar, and of interest from the point of view of this study, it was
found in a recent experiment that graded thin films may have
high relative dielectric permittivity as well as a flatter tem-
perature characteristic of permittivity than single-layer films
�6,7�. The traditional theories used to deal with homogeneous
materials �8,9� are not adequate for the treatment of compos-
ites with graded inclusions. To treat them properly, we have
recently developed a first-principles approach �10,11� and a
differential effective dipole approximation �12�.

This work has been motivated by a recent study of the
optical absorption spectrum of a graded metallic film �13�. In
that work, a broad surface plasmon absorption band was ob-
served in addition to a strong Drude absorption peak at zero
frequency. Such a broad absorption band has been shown to
be responsible for the enhanced nonlinear optical response as
well as an attractive figure of merit �the degree of optical
absorption�. Yuen et al. �14� pointed out that such an absorp-
tion spectrum, being related to the imaginary part of the ef-

fective dielectric constant, should be also reflected in the
Bergman-Milton spectral representation of the effective di-
electric constant �15,16�.

The Bergman-Milton spectral representation was origi-
nally developed for calculating the effective dielectric con-
stant and other response functions of two-component com-
posites. However, in that representation both of the two
components concerned are assumed to be homogeneous. It is
therefore worth extending the spectral representation to
graded composite materials. This work on graded films is an
example of a more general graded composite in three dimen-
sions. One of the main purposes of this work is to help to
identify the physical origin of the broad absorption band. It
turns out that, unlike in the case of homogeneous materials,
the characteristic function of a graded composite is a con-
tinuous function due to the continuous variation of the di-
electric function within the constituent component.

Moreover, we apply our theory to a special case of graded
composites, namely multilayer materials. From the practical
point of view, they are more convenient to fabricate than
graded materials �17� and, in addition, there are many algo-
rithms available for designing multilayer coatings �18,19�.
The present work is necessary in the sense that we shall
discuss the multilayer effects as the number of layers inside
the material increases. In this regard, this work should be
expected to have practical relevance. We will show that as
the number of layers N increases, a gradual transition from
sharp peaks to a broad continuous band occurs. The graded
composite results are recovered at the limit of N→�.

The rest of this paper is organized as follows. In Sec. II
the general derivation of the spectral representation for
graded composites is presented. In Sec. III we describe the
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model and present analytical results for the spectral represen-
tation of the effective dielectric constant of a graded film
with an interface, as well as a graded sphere. In those cases,
the Bergman-Milton formalism has been modified for graded
composites. We further obtain an analytic form for the spec-
tral density function of a multilayer film and a multilayer
sphere in Sec. IV. Numerical results are presented in Sec. V,
and discussion and conclusions are given in Sec. VI.

II. FORMALISM

We consider a two-component composite in which graded
inclusions of dielectric constant �1�r� are embedded in a ho-
mogeneous host medium of dielectric constant �2. It is im-
portant to notice that the dielectric constant �1�r� is a grada-
tion profile as a function of position r. We will restrict our
discussion and calculations to the quasistatic approximation,
i.e., dc /��1, where d is the characteristic size of the inclu-
sion, c is the speed of light in vacuum, and � is the fre-
quency of the applied field. In the quasistatic approximation,
the whole graded structure can be regarded with an effective
�overall� linear dielectric constant defined as �20�

�e =
1

V
� E · D

E0
2 dV , �1�

where E0 is the applied electric field along the z direction, E
and D are the local electric field and the local displacement,
respectively.

The objective of the present section is to solve the
Laplace equation

� · ���r� � ��r�� = 0 �2�

subject to the boundary condition �0=−E0z. The dielectric
function ��r� in Eq. �2� varies from component to component
but has a fixed mathematical form for a given component. It
can be given as �15�

��r� = �2�1 −
1

s
��r�� , �3�

where s= �1−�ref /�2�−1 is the material parameter and �ref is
some reference dielectric constant in the graded component.
The characteristic function ��r� may be written in terms of a
real function f�r� as

��r� = �1 + f�r� in inclusion

0 in host,
	

which accords for the microstructure of graded composites.
The function f�r� depends on the variation of the dielectric
constant in the inclusion component. For a homogeneous
constituent component �i.e., f�r�=0�, ��r�=1 in the inclusion
component. For graded systems, ��r� can be a continuous
function in the inclusion component due to the continuous
variation of the dielectric function within it. Thus Eq. �2� can
be solved

��r� = − E0z +
1

s
� dV���r����G�r − r�� · ����r�� , �4�

where G�r−r�� is a Green’s function satisfying

�2G�r − r�� = − �3�r − r�� for r in V ,

G = 0 for r on the boundary.

In order to obtain a solution for Eq. �2�, we introduce an

integral-differential Hermitian operator 	̂,

	̂ 
� dV���r����G�r − r�� · ��,

and define an inner product as

���
 =� dV��r� � �* · � 
 . �5�

With the above definitions, Eq. �4� can be simplified to

��r� = − E0z +
1

s
	̂��r� .

Let sn and ��n be the nth eigenvalue and eigenfunction of

the operator 	̂. Then, the generalized eigenvalue problem
becomes

� · ���r� � �n� = sn�2�n.

The potential �� can be expanded in series of eigenfunc-
tions,

�� 
 �
n
� s

sn − s
� ��n��n�z

��n��n
, �6�

where we choose E0=1 for convenience. Since ��r� is a real
function, the eigenvalues sn will be real. Also, for the graded
component, ��r� is a continuous function, which will cover
the full region, i.e., −����r���. Therefore the eigenvalues
sn, which depend on the continuously graded microstructure
��r�, do not lie within the interval �0, 1� but extend to −�
�sn�� as first pointed by Gu and Gong �21� for the case of
three-component composites. However, eigenvalues sn still
lie in �0, 1� for 0���r��1.

We are now in the position to find an analytical represen-
tation for the effective dielectric constant �e in Eq. �1�. We
take advantage of Green’s theorem, the boundary condition
�0=−z, and the Maxwell equation � ·D=0 to obtain the ef-
fective dielectric constant,

�e

�2
=

1

�2V
� �− � �� · DdV

=
− 1

V
� ẑ · ��1 −

1

s
��r�� � ��dV = 1 +

1

sV
�z�� .

�7�

If we now introduce the reduced response �15�

F�s� = 1 −
�e

�2
, �8�

and substitute Eq. �6� into Eq. �7� we find
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F�s� =
1

V
�

n

��z��n�2

��n��n � 1

s − sn
� .

We can now express the effective dielectric constant as

�e = �2�1 − �
n

fn

s − sn
� , �9�

where fn is given by

fn =
1

V

��z��n�2

��n��n
.

Using the above equations, we obtain the following sum
rule:

�
n

fn =
1

V
�z�z =

1

V
� dV��r� � z · � z =

1

V
� dV��r� .

�10�

It is worth noting that the sum rule will not equal the
volume fraction of the inclusion. This is different from the
Bergman-Milton spectral representation for two homoge-
neous systems, in which the sum rule equals the volume
fraction of the inclusion.

When the operator 	̂ has a continuous spectrum, Eq. �9�
should be replaced with the integral form

�e = �2�1 −� ds�
m�s��
s − s�

� , �11�

where m�s�� is the spectral density function. Then, the re-
duced response �Eq. �8�� becomes

F�s� =� ds�
m�s��
s − s�

. �12�

If we write s as s+ i0+, the right side of Eq. �12� becomes

P� ds�
m�s��
s − s�

− i�m�s� ,

and thus m�s�� is given through the limiting process

m�s�� = −
1

�
Im�F�s� + i0+�� . �13�

This final result is identical in form to Bergman’s expres-
sion for the analogous function in scalar composite materials.
However, there are differences in the derivation, namely, the
definition of the inner product Eq. �5�, the continuous graded
microstructure ��r�, the sum rule, as well as the range of
eigenvalues sn.

From Eq. �11� it is evident that if the spectral density
function m�s�� is known, the effective dielectric constant can
be obtained accurately, and vice versa. The spectral represen-
tation has been used to analyze the effective dielectric prop-
erties of composites. Recently, Levy and Bergman �22� also
used it in their study of nonlinear optical susceptibility. In
this regard, Sheng and co-workers �23� developed a practical
algorithm for calculating the effective dielectric constants
based on the spectral representation. In what follows, we

restrict ourselves to graded composites in one and three di-
mensions, and the corresponding multilayer composites.

III. SPECTRAL DENSITY FUNCTION OF GRADED
COMPOSITES

A. Spectral density function of a graded film

We consider a graded dielectric film of width L, in which
two media meet at a planar interface as shown in Fig. 1�a�.
The first medium �1�z� varies along the z axis, while the
second medium �2 is homogeneous. We define the graded
microstructure as

��z� = �1 + az , 0 � z � h ,

0, h � z � L ,
	 �14�

where a and h are real constants. They can be varied to
describe different graded films. Thus, according to Eq. �3�,

FIG. 1. �a� Dielectric profiles of two different graded films with
an interface at h=0.6. �b� Dielectric profiles of two graded spheres
with unit radius. Parameters used: The dielectric constant of the
host medium is set to �2=1 and the material parameter to s=−2.
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the dielectric function of graded film can be expressed as

��z� = �2�1 −
��z�

s
� . �15�

Owing to the simple geometry of a graded film, we can
use the equivalent capacitance of a series combination to
obtain the effective dielectric constant as

1

�e
=

1

L
�

0

L 1

��z�
dz . �16�

Substituting Eqs. �14� and �15� into Eq. �16�, we obtain

1

�e
=

1 − h

�2
+

s�ln�1 −
��0�

s
� − ln�1 −

��h�
s

��
a�2

,

with the assumption L=1.
We are now in a position to extend the Bergman-Milton

spectral representation of the effective dielectric constant
�15,16� to a graded film. For a graded system, ��z� can be a
continuous function in the inclusion medium. Using Eqs.
�11�–�13�, we obtain the spectral density function for a
graded film as

m�s�� = −

as� arg� s − 1

s − ah − 1
�

���s� arg� s − 1

s − ah − 1
��

2

+ �a�h − 1� − s� ln� s� − 1

s� − ah − 1
��

2

�
,

where s�=Re�s� and arg�¯� denotes the arguments of com-
plex functions.

B. Spectral density function of a graded sphere

The above theory can be generalized to graded compos-
ites in three dimensions. We consider a graded sphere with
dielectric constant �1�r� embedded into a homogeneous host
medium with dielectric constant �2. The dielectric constant
of the graded sphere �1�r� varies along the radius r. We can
obtain the effective dielectric constant of a graded sphere
using the spectral representation. We consider the graded mi-
crostructure by using the characteristic function as

��r� = �1 + ar , 0 � r � R ,

0, r  R ,
	

where R is the radius of the graded sphere. Thus from Eq. �3�
the dielectric constant in the graded sphere is given by

��r� = �2�1 −
��r�

s
� . �17�

In the dilute limit the effective dielectric constant of a small
volume fraction p of graded spheres embedded in a host
medium is given by �24,25�

�e = �2 + 3�2pb , �18�

where b is the dipole factor of graded spheres embedded in a
host as given in Ref. �10�. Using Eqs. �8� and �18�, the re-
duced response can be obtained as

F�s� = − 3�2pb . �19�

Thus the spectral density function of a graded sphere can be
given through a numerical evaluation of Eq. �13�.

IV. SPECTRAL DENSITY FUNCTION OF MULTILAYER
COMPOSITES

A multilayer composite is a special case of graded com-
posites. The gradation becomes continuous as the number of
layers approaches infinity. To investigate the multilayer ef-
fect, we use a finite difference approximation for the graded
profile �Eqs. �15� and �17�� for a finite number of layers. To
mimic a multilayer system, we divide the interval �0, 1� into
N equally spaced subintervals, �0,z1�, �z1 ,z2� , . . . , �zN−1,1�.
Then we adopt the midpoint value of ��z� for each subinter-
val as the dielectric constant of that sublayer. In this way, we
calculate the effective dielectric constant, eigenvalues, as
well as the spectral density function for each N. It is worth
noting that as N→� the results for graded composites are
recovered.

In addition to multilayer films, we can use the above ap-
proach to study the much simpler problem of a two-layer
film. In this system, we have two layers of dielectric con-
stants �1 and �2, and host �0. The thicknesses are hy,
h�1−y�, and 1−h, respectively, where y is the length ratio
between component �1 and component �2. We also define
two microstructure parameters, �1 and �2. If we let s
=1/ �1−�1 /�0�, then �1=1, and �2= ��0−�2� / ��0−�1�. Ac-
cording to Eq. �15�, the effective dielectric constant of the
two-layer film is now given by
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1

�e
=

hy

�1
+

h�1 − y�
�2

+
1 − h

�0
.

According to Eq. �8�, the reduced response can be given by

F�s� =
F1

s − s1
+

F2

s − s2
, �20�

where

F1 =
h�s1�y − y� + �� − ��

s1 − s2
,

F2 = −
h�s2�y − y� + �� − ��

s1 − s2
,

s1 =
1

2
�1 − h�y − y� + �� + �

− �4��− 1 + h� + �1 − h�y − y� + �� + ��2� ,

s2 =
1

2
�1 − h�y − y� + �� + �

+ �4��− 1 + h� + �1 − h�y − y� + �� + ��2� .

From the sums of F1 and F2, and the integral of the graded
microstructure ��z� given by Eq. �14�, we can check that the
sum rule expressed by Eq. �10� is obeyed. It should also be
noted that there are two poles in the expression for the re-
duced response corresponding to the two peaks in the spec-
tral density function. If h=1, then s1=0, i.e., one peak is
located at zero, which is explicitly shown in Fig. 2�a�.

Similarly, we can also apply our graded spectral represen-
tation to a single-shell sphere of core dielectric constant �1,
covered by a shell of �2, and suspended in a host of �0. In this
example, we can also define two microstructure parameters
�1 and �2. If we let s=1/ �1−�1 /�0�, then �1=1, and �2

= ��0−�2� / ��0−�1�. The dipole factor of a single-shell sphere
is given by �24,25�

b =
�2 − �0 + ��0 + 2�2�xf3

�2 + 2�0 + 2��2 − �0�xf3 ,

where f is the ratio between radius core and radius shell, and
x is given by

x =
�1 − �2

�1 + 2�2
.

Then, we can also write Eq. �19� similarly to Eq. �20�, where
the residues and eigenvalues are given by

F1 =
− 3ps1��− 1 + ��y3 − �� − �p�1 − 2�− 1 + ��y3 + 2��

3�s1 − s2�
,

F2 =
3ps2��− 1 + ��y3 − �� + �p�1 − 2�− 1 + ��y3 + 2��

3�s1 − s2�
,

s1 =
1

6
�1 + 3� − �1 + �2 − 8y3�� + �1 + 8y3��2� ,

s2 =
1

6
�1 + 3� + �1 + �2 − 8y3�� + �1 + 8y3��2� .

Analysis shows that the spectral representation for N=2 con-
tains two simple poles corresponding to two peaks in the
spectral density function. Therefore we draw the conclusion
that N peaks are a result of N layers. Moreover, N−1 peaks
will accumulate into a continuous broad absorption spectrum
when N tends toward infinity, which can be seen from Figs.
4�f� and 5�f�.

V. NUMERICAL RESULTS

We are now in a position to do some numerical calcula-
tions of the spectral density function from Eqs. �11� and �13�.

FIG. 2. �a� Spectral density functions of graded films without an
interface, i.e., h=1.0 �the width of the film was chosen to be L=1�.
�b� Spectral density function of a graded film meeting a homoge-
neous medium at an interface at h=0.5. The dielectric constant of
the host medium is �2=1.
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A small but finite imaginary part in the complex parameter
has been used in the calculations. Without any loss of gen-
erality, we choose L=1 for the width of the dielectric film
and R=1 for the radius of the graded sphere. We show the
effect of different graded profiles, as well as the effect of the
thickness of the inclusion. It should be noted that in all
figures the range of s is limited to �0, 1�, since we chose
−1�a�0 which limits the values of � into �0, 1�.

Figure 1 displays the dielectric profile of a graded film
�Fig. 1�a�� and a graded sphere �Fig. 1�b��. The figure shows
that the dielectric constant varies with the position in the
inclusion while it remains constant in the host medium. Also,
different values of a accord with different graded materials.

In Fig. 2�a� we plot the spectral density function m�s� of a
graded film without an interface against the spectral param-
eter for various graded microstructures ��z�. It is evident that
there is always a broad continuous band in the spectral den-
sity function. Both the strength as well as the width of the

continuous part of m�s� increase with the gradient of the
dielectric profile. Thus the previous results of the broad
surface-plasmon band can be expected. Note that there is a
sharp peak at s=0, which is also present in a homogeneous
film. In Fig. 2�b� we plot the spectral density function of a
graded film meeting a homogeneous medium at an interface
for various graded microstructures ��z�. Again, there is al-
ways a broad continuous band in the spectral density func-
tion. However, the sharp peak has now shifted to a finite
value of s, which is also present in a homogeneous film.

In Fig. 3 the spectral density function of a graded sphere
is displayed for a volume fraction p=0.1. In this case, the
interface always exists. It is clear that a broad continuous
function in the spectral density function is always observed,
as well as the shift of the sharp peak. However, the decrease
of the broad continuous function is more abrupt for a graded
sphere than for graded film with increasing s.

Figures 4 and 5 display the spectral density function for a
multilayer film and a sphere, respectively. It is clear that
there are always N sharp peaks for N layers. Moreover, it is
worth noting that there occurs a transition from sharp peaks
to a broad continuous band with increasing N �see Figs. 4�f�
and 5�f��, that is, the graded results are recovered as N→�.
In particular, we had obtained the analytical expression of
spectral density function for N=2. There are two resonances
corresponding to the two peaks in Figs. 4�a� and 5�a�.

VI. DISCUSSION AND CONCLUSIONS

We have investigated a graded composite film and a
sphere by means of the Bergman-Milton spectral representa-
tion. It was shown that the spectral density function can be
obtained analytically for a graded system. However, unlike
in the case of homogeneous constituent components, the
characteristic function is a continuous function due to the
presence of gradation. Moreover, the derivation as well as
some salient properties, namely, the sum rule, the definition

FIG. 3. The spectral density function of a graded sphere with
volume fraction p=0.1.

FIG. 4. Spectral density functions of
multilayer films with a varying number of layers
�N�. The dielectric constant of the host medium is
set to �0=1 and the parameter defining the slope
of the gradation to a=−0.8. The solid line shows
the N→� limit.
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of the inner product, the definition of the integral-differential
operators, and the range of spectral parameters, do change
because of the continuous variation of the dielectric profile
within the constituent components. It should be noted that in
a graded composite the eigenvalues are not limited to �0, 1�
and they can be extended to −��sn�� for the full region of
�, i.e., −�����. In this work, for simplicity, we investi-
gated the spectral density function in 0�s�1 by choosing
−1�a�0 to limit the values of � into �0, 1�.

We also studied multilayer composites and calculated the
spectral density function versus the number of layers in order
to explicitly demonstrate that the broad continuous spectrum
arises from the accumulation of poles when the number of
layers tends to infinity. This finding coincides with the broad
surface-plasmon absorption band associated with the optical
properties of graded composites.

To sum up, we have investigated the spectral density
function of graded films and graded spheres as well as mul-
tilayers. There is always a broad continuous function in the
spectral density function in graded composite, but simple
poles in multilayer composite, and the number of poles, de-
pend on the number of layers. Moreover, there is a gradual
transition from sharp peaks to a broad continuous band until
the graded composite results are recovered in the limit of
N→�.
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